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THE SELFSIMILAR ASY~T~TI~ FORM OF ~O~-STAT~~~ARY VORTEX FLOWS" 

P.N. SVIRKUN~V and E.A. FEL'DE 

The hydrodynamic reaction of a viscous incompressible fluid filling a 
half-space to a rotational impulse applied to its surface is studied. 
It is established that for a non-stationary flow which occurs in this 
case, a stable, selfsimilar asymptotic form exists which is independent 
of the form of the initial perturbation. Asymptotic expressions are 
obtained for the universal distribution of the meridional velocity near 
the surface and et infinity. 

An analogue of Bernoulli's theorem is established for a class of 
non-stationary selfsimilar flows of an ideal fluid, and a corresponding 
integral of motion is obtained for the axisymmetric case. 

I. Consider a class of selfsimilar motions of a viscous incompressible fluid whose 
velocity field is determined by the expression 

“g/qU!(-+ (14 

Here r ~11~ is the radius vector, t is the time and y is the characteristic parameter 
of the problem with the dimensions of circulation. Solutions of this type may describe the 
asymptotic stage of the reaction of a liquid medium under the action of localized dynamic per- 
turbations. 

The system of Navies?Stokes equations for the dimensionless vector function u will trans- 
form, taking (1.1) into account, to the form 

(the operators V and h act on 8; P is the pressure and a is the density of the fluid). 

2. Let us first consider some general properties of the flows of type (1.1) in the limit 
when the viscosity becomes vanishingly small (v~Y). In this case the last term of the first 
equation of (1.2) can be neglected and we can rewrite this equation in a form analogous to 
Euler's equation in Gromeko-Lamb form 

0) x (u --%a) = - QD, n = p + Y&- Ys(a.u) 12.f) 
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Multiplying both sides of Eq.(2.1) scalarly by u--V& we find that B=ooaat on the 

lines of the vector u-V@, i.e. an analogue of Bernoulli's theorem exists for the class of 
non-stationary motions of the fluid in question. 

When the motion of the fluid is axisymmetric, we find from (2.1) in the same manner 

that the angular momentum pue (p is the distance along the axis of symmetry) is also constant 

on the lines of the vector field =-%a. This yields, taking the analogue of the Bernoulli 
integral into account, the integral of Eq. (2.1): II= F(pu,) (P is a function which must be 
determined from the boundary conditions), in the same manner as in the stationary case /I/. 

3. We will illustrate the use of the representation of the velocity field in the form 
(1.1) by determining the reaction of a viscous incompressible fluid occupying a half-space, 
to the action of a rotational impulse applied to its surface. In this case the velocity field 
can be sought in the form (/12/,p.l92) 

", = rF (2, 8). "I$ = rQ, (4 r), u* = I (a, tf, P P P (2, f) (3.1) 

where r, 5 T are cylindrical dimensional coordinates. 
The problems discussed in /2/ are connected with the study of the dynamics of a boundary 

layer on a rotating disc, in the case when its angular velocity of rotation varies according 
to the law -ta. (The value of CL=-i should correspond to the case discussed in the present 
paper). However, the final system of equations for the selfsimilar functions lacks the non- 
linear convective terms which, as we have found, play a major role in the dynamics of the 

passage to the selfsimilar stage. Below we discuss the problem in question by applying the 
numerical solution of the non-stationary Navier-Stokes equations to solutions of the type 
13.1). 

Let us transform the Navier-Stokes equations with help of the following substitution: 

r-t a i= r/Jy (f 3 4), t -t r = In (i + tlf& v-t u r\= I/v/it + to) y 

Here t E (0.m). and ?% determines the characteristic spatial scale of the initial 
perturbation. Eq.il.3) remains unchanged, and we add au/r% to the left-hand side of Eq. 
(1.2). The emergence of the solution to the stage stationary with respect to T, is equivalent 
to the emergence of the selfsimilar asymptotic form. 

We shall assume that at the initial instant the only non-zero parameter is the azimuthal 
velocity component U,=&(E) (E-X&/~&), and Q,(E) decreases fairly rapidly in the 
direction of increasing depth of the fluid (as 5-m). The surface is assumed to be immobile, 
which is true when the perturbation is sufficiently small, and tangential stresses on it are 
assumed to be zero. In accordance with this, we shall seek the solution in the form 

y = -w (E, 7), up = rhawlae, Us = PD 65, ~1, P = P (E, T) 

Here the equation of continuity is satisfied automatically. Denoting awl@ by Y, we obtain 
from the first equation of (1.2) a system of equations for the dimensionless functions Y,&,p 
(the integration in 6 is carried out from 0 to s) 

The System of Eqs.(3.2) is supplemented by the boundary conditions which follow from the 
fact that the tangential stresses on the free surface are zero. 

The condition W(E==O)== 0 was used in formulating Eqs.(3.2). 
The resulting boundary-value problem was solved numerically for various initial 

tributions B&O)=&,(f) under the condition that Y&O) 
dis- 

-0. An explicit scheme was used, known 
/3/ to be stable and reducible to the solution when the step in 7 is sufficiently small. 
We found, as a result, that a meridional flow appears for any initial profiles W,(g), local- 
ized near E- 0, whose profile tends asymptotically (~*2,) 
of Q,(E), while the rotation disappears. 

to the universal form independent 

This selfsimilar solutian differs from the one obtained when, following /2f, we 
o--l) and which yields Of0 at the selfsimilar stage. 

Put 

the fact that convective transfer, 
The difference is related to 

which ensures the passage of vorticity in the radial 
direction to infinity, is disregarded in /2J. 

Figs.1 and 2 show the dynamics of the passage to the selfsimilar stage for two different 
profiles &(& 6&,.=-i when OrEsi. &,-0 when E>i (Fig.1) and a,==o,z exp(-f*) 
The numbers on the curves correspond to the values of r. 

(Fig-Z). 

Let US analyse in greater detail the velocity field at the asymptotic Stage when ia,@, 
aYl& = 0. In this case the equation for the velocity component w(E) has the fore (a prime 



280 

denotes a derivative with respect to 5) 

5W" + (W + YZ) tv” f (4 - W'IZ) W = 0 (3.3) 

Analytically, Eq. (3.3) is hardly solvable; hence, in order to analyse its solution 
satisfying 
expansions 

the necessary boundary conditions we shall use the method of-matched asymptotic 
under the assumption that tr%f /41. 

We can neglect the viscous term in the 
obtain the solution in parametric form 

Here 1 E: (0.2) is a parameter determining the dependence of W and Y on a, and C is a 

Fig.1 Fig.2 

region f*l/e, inwhich case it is easy to 

(3.4) 

constant proportional to the velocity at infinity W,. Passing to the limit as 1-2 and 
eliminating the indeterminacy, we obtain 

w,= 3nC c3.S) 

When e-0, (3.4) yields the asymptotic expression 

(3.6) 

Making the substitution Y-21-N and linearizing f3.3), we obtain the following equation 
in the inner region f-&P%: 

eN'+=&N'-N c 0 
whose solution satisfying the required condition that N'(O)-0, has the form 

N = A.F (--li6, ‘/a, -5W(4e)) 

where F(cz,S,z) represents the confluent hypergeometric function. Using the asymptotic form 
of F for g*,z/E we obtain N-tai* /5/. The matching condition and solution (3.6) now 
yield the following relation connecting the constants A and C: 

A = n-% (7/1O) (~o~/~*'~ 

Taking into account relation (3.5) and the fact that the substitution W*W,e c-‘~W,f,- 

E, _ e-‘fie removes the parameter e from Eq.(3.3), we can conclude that 6-G, and therefore 
A is independent of E. The computations carried out have shown that C=:O.O7dl’ and A s 3.12. 

Thus we have found that, for the problem formulated above concerning the reaction of a 
semi-infinite viscous incompressible medium to the action of a rotational impulse applied to 
the surface, a selfsimilar stable asymptotic form is reached. The nature of the initial per- 
turbation changes considerably in the course of this. The azimuthal velocity component 
vanishes in the selfsimilar stage and only the meridional flow remains, whose parameters are 
independent of the amplitude and form of the initial perturbation.. 
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VARIOUS FORMS OF BOUNDARY CONDITIONS* 

V.A. AVAKYAN and L.P. SMIRNOV 

The method of integrating the boundary conditions in the Stokes 
approximation is used to obtain expressions for the forces of resistance 
of a spherical drop with the usual boundary conditions taking both the 
surface viscosity and changes in surface tension into account, as well 
as that of a solid sphere with boundary conditions of slippage. 

Faxen established formulas for the force of resistance and momentum acting on a solid 
sphere with boundary conditions of adhesion, for the case when the sphere moves and rotates 
in an arbitrary Stokes flow /l/ (satisfying Stokes's equations). The result was generalized 
in /2/ to the case of a spherical drop, using the Hadamard-Rybchinskii equation and the 
reciprocity theorem for the Stokes flows generalized in /3/. 

Below, a relatively simple method is presented for determining the forces acting on a 
spherical particle in an inhomogeneous Stokes flow. The perturbation fields introduced into 
the flow by the particle are described by a Lamb series /4/. Subsequent integration over the 
surface of the sphere of the boundary conditions specified on its surface enables us to 
determine the required integral characteristics in terms of which the force acting on the 
particle is expressed. The final formulas contain the integrals of the characteristics of 
the inhomogeneous flow impinging on the sphere, and represent a generalization of the Faxen 
formulas /l/. 

1. When an arbitrary Stokes flow moves past a sphere, a perturbation field described 
by a Lamb series appears by virtue of the need to satisfy the boundary conditions on the 
sphere. The force of resistance acting on the sphere is found to depend only on the stresses 
caused by the presence of the perturbation field. It can be shown that integration of the 
stresses present in the basic flow over the whole surface of the sphere gives a zero result 
for any Stokes flow. The contribution of the perturbation field will depend only on the 
function p_, (the harmonic function appearing in Lamb's solution /4/). The remaining terms 
of the Lamb expansion make no contributon to the integral expressing the force of resistance 
D, by virtue of the orthogonality of spherical functions of various orders on the sphere. 
Hence we obtain 

where a is the radius, C is the surface of the sphere, and r is the radius vector drawn from 
the centre of the sphere to a point on its surface. 

Let the sphere be situated in an incoming inhomogeneous flow vrn determined relative 
to a frame of reference attached to the sphere. Then, using the boundary conditions on the 
sphere, we can be obtain a system of equations from which the value of the integral (1.1) can 
be found. 

Let us consider a liquid sphere on whose surface the following conditions must hold: the 
total radial velocities of the external flow (index 
+i= 0 

e) and internal flow (index i) 
must vanish; the tangential stresses P',,= PiT 

+e = 0; 
are continuous; the total tangential 

velocities u,"= uyi are continuous. The velocity perturbations due to the presence of a 
spherical drop streamlined by an inhomogeneous flow vID are described by the Lamb series in 
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